Working Waterfronts Documentation
Release 1.0

OSU Open Source Lab

February 11, 2015

Contents

1 Usage

2 API Endpoints

3 Install

4 Planning
4.1 Draft API e
42 Draft Datamodel

5 Developer Guide

5.1 ProjectStructure e
5.2 IssueTracking i i
5.3 Repository Layout L .
54 CodeStandards
5.5 Platform dependent specificso
5.6 Postgisimageo e e e e

5.7 Building the What’s Fresh docker image
5.8 Running the What’s Fresh docker image

59 Requirements oo
5.10 Running the Django project,
501 Testing o v v v e

6 Indices and tables

Working Waterfronts Documentation, Release 1.0

API and Usage Documentation:

Contents 1

Working Waterfronts Documentation, Release 1.0

2 Contents

CHAPTER 1

Usage

Working Waterfronts Documentation, Release 1.0

4 Chapter 1. Usage

CHAPTER 2

API Endpoints

Working Waterfronts Documentation, Release 1.0

6 Chapter 2. API Endpoints

CHAPTER 3

Install

Working Waterfronts Documentation, Release 1.0

8 Chapter 3. Install

CHAPTER 4

Planning

4.1 Draft API

4.1.1 Format

Responses will be returned in standard JSON format. An attempt will be made to keep the structure simple. Https will
be used for all endpoints.

134

Null values (optional fields that do not have data), will be empty strings:

4.1.2 Versions

The API will be versioned with simple version integers, 1, 2, 3, ...

ex: https://working-waterfronts.org/1/pois

4.1.3 Errors

Error records will be returned in every message, and will consist of a dictionary containing the error status, error name,
error text and error level. The status field will indicate the presence of an error condition, and should be checked before
attempting to process the rest of the response.

example:

error: {error_status: true, error_name: 'not_found_error’, error_text: 'poi with id=232

4.1.4 Extended Fields

To allow for future expandability, a dictionary call ‘ext’ will be included with every response. This dictionary will
either contain no records, or will contain additional first-class records that were not included in the original specifica-
tion. For instance, if a new attribute “color” is later added to the product response, it can be included in the extended
attributes array. Applications can choose to discover/use these new fields or ignore them without effecting backwards
compatibility. Response validation should include the presence of ext, but not its contents.

could not be

https://working-waterfronts.org/1/pois

Working Waterfronts Documentation, Release 1.0

4.1.5 Endpoints

/pois

Return a dictionary containing a record for every poi in the database. This data is unlikely to change frequently, it
should be in long-term storage on the device and refreshed periodically.

{
error: {error_status: bool, error_name: text, error_text: text, error_level},
pois: [

{id: int,
name: text,
alt_name: text or null,
summary: text,

lat: float,

long: float,

street: varchar,

city: varchar,

state: wvarchar,

zip: varchar,

description: text

location_description: text,

history: text,

facts: text,

contact_name: wvarchar,

phone: varchar,

website: url,

hazards: [
{
name: varchar,
description: varchar,
id: int
}!
]I
categories: [

{
category: varchar,
id: int

br

]I
images: [
{
link: wvarchar,
name: varchar,
caption: varchar

1,
videos: [

link: wvarchar,
name: varchar,
caption: wvarchar

by

]l

email: email,

10 Chapter 4. Planning

Working Waterfronts Documentation, Release 1.0

created: datetime,

modified: datetime,

ext: {attribute: value, attribute: value...} or {}},
{...},
{...}

/pois/<id>
Returns a single poi record identified by <id>. This will return all available details about a poi.

{
error: {error_status: bool, error_name: text, error_text: text, error_level},

id: int,
name: text,
alt_name: text or null,
summary: text,

lat: float,

long: float,

street: varchar,

city: varchar,

state: wvarchar,

zip: varchar,

description: text,

history: text,

facts: text,

location_description: text (optional),

contact_name: wvarchar,

phone: varchar (optional),

website: url (optional),

email: email (optional),

hazards: [
{
name: varchar,
description: wvarchar,
id: int
}V
]I
categories: [

{
category: varchar,
id: int

by

1,
images: [
{
link: wvarchar,
name: varchar,
caption: wvarchar

]I
videos: [
{
link: wvarchar,
name: varchar,

4.1. Draft API 11

Working Waterfronts Documentation, Release 1.0

caption: varchar

1,
created: datetime,
modified: datetime,
ext: {attribute: value, attribute: value...} or {},

}

/pois/categories/<id>
Returns a list of pois in the category identified by <id>.

{
error: {error_status: bool, error_name: text, error_text: text, error_level},
pois: [
{id: int,
name: text,
alt_name: text or null,
summary: text,
lat: float,
long: float,
street: varchar,
city: varchar,
state: varchar,
zip: varchar,
created: datetime,
modified: datetime,
ext: {attribute: value, attribute: value...} or {}},
{...},
{...}

4.1.6 Additional parameters

These parameters can be added to any endpoint request
?location=<lat>,<long>

or

?lat=<float> &long=<float>

These parameters represent the latitude and longitude of either the mobile device’s current location, or a pre-defined
location such as “Newport, OR”. These will cause the results to be sorted by proximity, closest items first. This
parameter will be ignored with the /stories endpoint. Depending on how the device handles the coordinates, it may be
more convenient to send a single parameter, ‘location=<lat>,<long>" and use the latitude and longitude as positional
arguments.

examples:
2limit=<int>

This parameter will limit the number of records returned to <int>. In combination with the location parameter, it can
be used to return the 5 nearest pois selling tuna:

?proximity=<int>

12 Chapter 4. Planning

Working Waterfronts Documentation, Release 1.0

This parameter will restrict the returned results to those within <int> miles (or configurable distance unit) of the given

location. Ignored if no location is given.

4.2 Draft Data model

4.2.1 pois

id int (pk)
name varchar
alt_name varchar (optional)
location point
street varchar
city varchar
state varchar
zip varchar
description text
location_description text (optional)
history text
facts text
contact_name varchar
phone varchar (optional)
website url (optional)
email email (optional)
created datetime
modified datetime (auto-update on modification)

4.2.2 categories

id int (pk)
category varchar

4.2.3 images

id int (pk)
name varchar
poi_id int (foreign key to poi)
image image (file)
caption text (optional)
created datetime
modified datetime (auto-update on modification)

4.2.4 videos

id int (pk)
name varchar
poi_id int (foreign key to poi)
video link
description text (optional)
created datetime
modified datetime (auto-update on modification)

4.2. Draft Data model

13

Working Waterfronts Documentation, Release 1.0

4.2.5 hazards

id

name

description
created
updated

int (pk)

varchar

text
datetime
datetime

4.2.6 pois_hazards

poi_id int
hazard_id int

(foreign key
(foreign key

4.2.7 pois_categories

poi_id
category_id

Developer Setup:

int (foreign
int (foreign

(auto-update on modification)

to poi)
to hazard)

key to poi)
key to category)

14

Chapter 4. Planning

CHAPTER 5

Developer Guide

5.1 Project Structure

5.2 Issue Tracking

The bug tracker for the Working Waterfronts API is at code.osuosl.org, and all bugs and feature requests for the
Working Waterfronts API should be tracked there. Please create an issue for any code, documentation or translation
you wish to contribute.

5.3 Repository Layout

We loosely follow Git-flow for managing repository. Read about the branching model and why you may wish to use it
too.

master Releases only, this is the main public branch.
release/<version> A release branch, the current release branch is tagged and merged into master.

develop Mostly stable development branch. Small changes only. It is acceptable that this branch have bugs, but
should remain mostly stable.

feature/<issue number> New features, these will be merged into develop when complete.
When working on new code, be sure to create a new branch from the appropriate place:
¢ develop - if this is a new feature

* release/<version> - if this is a bug fix on an existing release

5.4 Code Standards

We follow PEP 8, “the guide for python style”.

15

https://code.osuosl.org/projects/sea-grant-working-waterfronts/
http://github.com/nvie/gitflow
http://nvie.com/posts/a-successful-git-branching-model/
http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/
http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/
http://www.python.org/dev/peps/pep-0008/

Working Waterfronts Documentation, Release 1.0

5.4.1 Developing with Docker
5.5 Platform dependent specifics

If you are using Linux you will need to prefix all of the following commands with sudo. If you are using OS X you
will need to use the boot2docker tool.

5.6 Postgis image

The Working Waterfronts Docker workflow relies on the kartoza/postgis image available on the docker hub. To pull
this image run:

$ docker pull kartoza/postgis

The image can take two optional environment variables to specify a user and password to the database. These will be
specified with the -e option. A port should be provided with the -p followed by the port to communicate with the host
machine, a colon, and the port to communicate with the container. Make sure the environment variables passed to this

container match those which are passed to the Working Waterfronts Docker image. Reasonable defaults can be found
in the Dockerfile. Postgres typically runs on port 5432. To run the image:

$ docker run -d —--name postgis -p $HOSTPORT:S$SCONTAINERPORT -e USERNAME=$USERNAME -e PASS=$PASSWORD |}

Make sure that the What’s Fresh project container connects to the database over the host port.

5.7 Building the What’s Fresh docker image

$ docker build -t="osuosl/working_ waterfronts:dev"

5.8 Running the What’s Fresh docker image

The Dockerfile included in the root of the repository will load the code from the current directory. This means that any
changes you made to your copy of the repository will be run. Environment variables can be passed with the -e option.
The Dockerfile specifies a reasonable default set of environment variables, which can be overridden with the -e option.

Before the app is ready, create the database and run migrations.

$ docker exec -it postgis bash

createdb -U SUSERNAME -h localhost $DBNAME

psgl -U SUSERNAME -h localhost

DBNAME=# create extension postgis;

CREATE EXTENSION

DBNAME=# "D

"D

$ docker run —--link postgis:postgis osuosl/working_waterfronts:dev python manage.py migrate

Next, connect to the database with psql and create the relevant user.

$ psgl -h localhost -U docker -p S$HOSTPORT

Running the server is similar:

16 Chapter 5. Developer Guide

Working Waterfronts Documentation, Release 1.0

$ docker run —--link postgis:postgis -p 8000:8000 osuosl/working waterfronts:dev

If you are running linux, connect to http://localhost:8000 in your browser. If you are running OS X, get the IP address
of your boot2docker vim

$ boot2docker ip
192.168.59.103

Next connect to http://192.168.59.103:8000 in your browser.
On occasion it may be necessary to obtain a shell in the container:

$ docker run -it osuosl/working waterfronts:dev bash

Some developers may prefer to mount their copy of the application as a volume when they run the app:

$ docker run -v /path/to/code/:/opt/whats_fresh —--link postgis:postgis osuosl/whats_fresh:dev

5.8.1 Developing
5.9 Requirements

This project uses a Vagrant virtual machine to create a homogeneous development environment and allow developers
to destroy and recreate their environment in the case that something goes horribly, horribly wrong.

To set up this environment on your own machine, you’ll need a few things:
Vagrant
To install Vagrant, just use your package manager:

sudo yum install vagrant # Debian or Ubuntu
sudo apt-get install vagrant # Centos

vagrant-berkshelf and vagrant-omnibus

These plugins are used to configure the Vagrant machine. To install these plugins, you’ll need to use Vagrant’s plugin
manager:

vagrant plugin install vagrant-berkshelf
vagrant plugin install vagrant-omnibus

5.10 Running the Django project

5.11 Testing

Model and View documentation:

5.9. Requirements 17

http://localhost:8000
http://192.168.59.103:8000

Working Waterfronts Documentation, Release 1.0

18 Chapter 5. Developer Guide

CHAPTER 6

Indices and tables

* genindex
* modindex

e search

19

	Usage
	API Endpoints
	Install
	Planning
	Draft API
	Draft Data model

	Developer Guide
	Project Structure
	Issue Tracking
	Repository Layout
	Code Standards
	Platform dependent specifics
	Postgis image
	Building the What's Fresh docker image
	Running the What's Fresh docker image
	Requirements
	Running the Django project
	Testing

	Indices and tables

